Module dadi.NLopt_mod

Expand source code
import numpy as np
from dadi.Inference import _project_params_down, _project_params_up, _object_func
import nlopt

def opt(p0, data, model_func, pts, multinom=True,
        lower_bound=None, upper_bound=None, fixed_params=None,
        ineq_constraints=[], eq_constraints=[], 
        algorithm=nlopt.LN_BOBYQA,
        ftol_abs=1e-6, xtol_abs=1e-6,
        maxeval=int(1e9), maxtime=np.inf,
        stopval=0, log_opt = False,
        local_optimizer=nlopt.LN_BOBYQA,
        verbose=0, func_args=[], func_kwargs={},
        ):
    """
    p0: Initial parameters.
    data: Spectrum with data.
    model_func: Function to evaluate model spectrum. Should take arguments
                (params, (n1,n2...), pts)
    pts: Grid points list for evaluating likelihoods
    multinom: If True, do a multinomial fit where model is optimially scaled to
              data at each step. If False, assume theta is a parameter and do
              no scaling.
    lower_bound: Lower bound on parameter values. 
                 If not None, must be of same length as p0.
    upper_bound: Upper bound on parameter values.
                 If not None, must be of same length as p0.
    fixed_params: If not None, should be a list used to fix model parameters at
                  particular values. For example, if the model parameters
                  are (nu1,nu2,T,m), then fixed_params = [0.5,None,None,2]
                  will hold nu1=0.5 and m=2. The optimizer will only change 
                  T and m. Note that the bounds lists must include all
                  parameters. Optimization will fail if the fixed values
                  lie outside their bounds. A full-length p0 should be passed
                  in; values corresponding to fixed parameters are ignored.
    ineq_constraints: List of functions defining inequality constraints, specifying quantities 
                      that should be less than zero, along with tolerances.
                      Each function should take arguments func(params, grad), where params is
                      the current vector of parameter values. grad is not typically used in dadi.
                      For example, def func1(p, grad): (p[0]+p[1])-1 specifies that the total of
                      p[0]+[1] should be less than 1.
                      This would be passed into opt as ineq_constraints = [(func1, 1e-6)].
                      Here the 1e-6 is the tolerance on the constraint, which is > 0 to deal with numerical
                      rounding issues.
                      Only some algorithms support constraints. We suggest using nlopt.LN_COBYLA.
    eq_constraints: List of functions defining equality constraints, specifying quantities 
                      that should be equal to zero, along with tolerances.
                      Each function should take arguments func(params, grad), where params is
                      the current vector of parameter values. grad is not typically used in dadi.
                      For example, def func1(p, grad): 1 - (p[0]+p[1]) specifies that the total of
                      p[0]+[1] should be equal to 1.
                      This would be passed into opt as ineq_constraints = [(func1, 1e-6)].
                      Here the 1e-6 is the tolerance on the constraint, which is > 0 to deal with numerical
                      rounding issues.
                      Only some algorithms support constraints. We suggest using nlopt.LN_COBYLA.
    algorithm: Optimization algorithm to employ. See
               https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/
               for possibilities.
    ftol_abs: Absolute tolerance on log-likelihood
    xtol_abs: Absolute tolerance in parameter values
              Both these tolerances should be set more stringently than your actual
              desire, because algorithms cannot generally guarantee convergence.
    maxeval: Maximum number of function evaluations
    maxtime: Maximum optimization time, in seconds
    log_opt: If True, optimization algorithm will run in terms of logs of parameters.
    stopval: Algorithm will stop when a log-likelihood of at least stopval
             is found. This is primarily useful for testing.
    local_optimizer: If using a global algorithm, this specifies the local algorithm
                     to be used for refinement.
    verbose: If > 0, print optimization status every <verbose> model evaluations.
    func_args: Additional arguments to model_func. It is assumed that 
               model_func's first argument is an array of parameters to
               optimize, that its second argument is an array of sample sizes
               for the sfs, and that its last argument is the list of grid
               points to use in evaluation.
    func_kwargs: Additional keyword arguments to model_func.
    (See help(dadi.Inference.optimize_log for examples of func_args and 
     fixed_params usage.)
    """
    if lower_bound is None:
            lower_bound = [-np.inf] * len(p0)
    lower_bound = _project_params_down(lower_bound, fixed_params)
    # Replace None in bounds with infinity
    if upper_bound is None:
            upper_bound = [np.inf] * len(p0)
    upper_bound = _project_params_down(upper_bound, fixed_params)
    # Replace None in bounds with infinities
    lower_bound = [_ if _ is not None else -np.inf for _ in lower_bound]
    upper_bound = [_ if _ is not None else np.inf for _ in upper_bound]

    if log_opt:
        lower_bound, upper_bound = np.log(lower_bound), np.log(upper_bound)

    p0 = _project_params_down(p0, fixed_params)

    opt = nlopt.opt(algorithm, len(p0))

    opt.set_lower_bounds(lower_bound)
    opt.set_upper_bounds(upper_bound)

    for cons, tol in ineq_constraints:
        opt.add_inequality_constraint(cons, tol)
    for cons, tol in eq_constraints:
        opt.add_equality_constraint(cons, tol)

    opt.set_stopval(stopval)
    opt.set_ftol_abs(ftol_abs)
    opt.set_xtol_abs(xtol_abs)
    opt.set_maxeval(maxeval)
    opt.set_maxtime(maxtime)

    # For some global optimizers, need to set local optimizer parameters.
    local_opt = nlopt.opt(local_optimizer, len(p0))
    local_opt.set_stopval(stopval)
    local_opt.set_ftol_abs(ftol_abs)
    local_opt.set_xtol_abs(xtol_abs)
    local_opt.set_maxeval(maxeval)
    local_opt.set_maxtime(maxtime)
    opt.set_local_optimizer(local_opt)

    def f(x, grad):
        if grad.size:
            raise ValueError("Cannot use optimization algorithms that require a derivative function.")
        if log_opt: # Convert back from log parameters
            x = np.exp(x)
        return -_object_func(x, data, model_func, pts, 
                             verbose=verbose, multinom=multinom,
                             func_args=func_args, func_kwargs=func_kwargs, fixed_params=fixed_params)

    opt.set_max_objective(f)

    if log_opt:
        p0 = np.log(p0)
    xopt = opt.optimize(p0)
    if log_opt:
        xopt = np.exp(p0)

    opt_val = opt.last_optimum_value()
    result = opt.last_optimize_result()

    xopt = _project_params_up(xopt, fixed_params)

    return xopt, opt_val

Functions

def opt(p0, data, model_func, pts, multinom=True, lower_bound=None, upper_bound=None, fixed_params=None, ineq_constraints=[], eq_constraints=[], algorithm=34, ftol_abs=1e-06, xtol_abs=1e-06, maxeval=1000000000, maxtime=inf, stopval=0, log_opt=False, local_optimizer=34, verbose=0, func_args=[], func_kwargs={})

p0: Initial parameters. data: Spectrum with data. model_func: Function to evaluate model spectrum. Should take arguments (params, (n1,n2…), pts) pts: Grid points list for evaluating likelihoods multinom: If True, do a multinomial fit where model is optimially scaled to data at each step. If False, assume theta is a parameter and do no scaling. lower_bound: Lower bound on parameter values. If not None, must be of same length as p0. upper_bound: Upper bound on parameter values. If not None, must be of same length as p0. fixed_params: If not None, should be a list used to fix model parameters at particular values. For example, if the model parameters are (nu1,nu2,T,m), then fixed_params = [0.5,None,None,2] will hold nu1=0.5 and m=2. The optimizer will only change T and m. Note that the bounds lists must include all parameters. Optimization will fail if the fixed values lie outside their bounds. A full-length p0 should be passed in; values corresponding to fixed parameters are ignored. ineq_constraints: List of functions defining inequality constraints, specifying quantities that should be less than zero, along with tolerances. Each function should take arguments func(params, grad), where params is the current vector of parameter values. grad is not typically used in dadi. For example, def func1(p, grad): (p[0]+p[1])-1 specifies that the total of p[0]+[1] should be less than 1. This would be passed into opt as ineq_constraints = [(func1, 1e-6)]. Here the 1e-6 is the tolerance on the constraint, which is > 0 to deal with numerical rounding issues. Only some algorithms support constraints. We suggest using nlopt.LN_COBYLA. eq_constraints: List of functions defining equality constraints, specifying quantities that should be equal to zero, along with tolerances. Each function should take arguments func(params, grad), where params is the current vector of parameter values. grad is not typically used in dadi. For example, def func1(p, grad): 1 - (p[0]+p[1]) specifies that the total of p[0]+[1] should be equal to 1. This would be passed into opt as ineq_constraints = [(func1, 1e-6)]. Here the 1e-6 is the tolerance on the constraint, which is > 0 to deal with numerical rounding issues. Only some algorithms support constraints. We suggest using nlopt.LN_COBYLA. algorithm: Optimization algorithm to employ. See https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/ for possibilities. ftol_abs: Absolute tolerance on log-likelihood xtol_abs: Absolute tolerance in parameter values Both these tolerances should be set more stringently than your actual desire, because algorithms cannot generally guarantee convergence. maxeval: Maximum number of function evaluations maxtime: Maximum optimization time, in seconds log_opt: If True, optimization algorithm will run in terms of logs of parameters. stopval: Algorithm will stop when a log-likelihood of at least stopval is found. This is primarily useful for testing. local_optimizer: If using a global algorithm, this specifies the local algorithm to be used for refinement. verbose: If > 0, print optimization status every model evaluations. func_args: Additional arguments to model_func. It is assumed that model_func's first argument is an array of parameters to optimize, that its second argument is an array of sample sizes for the sfs, and that its last argument is the list of grid points to use in evaluation. func_kwargs: Additional keyword arguments to model_func. (See help(dadi.Inference.optimize_log for examples of func_args and fixed_params usage.)

Expand source code
def opt(p0, data, model_func, pts, multinom=True,
        lower_bound=None, upper_bound=None, fixed_params=None,
        ineq_constraints=[], eq_constraints=[], 
        algorithm=nlopt.LN_BOBYQA,
        ftol_abs=1e-6, xtol_abs=1e-6,
        maxeval=int(1e9), maxtime=np.inf,
        stopval=0, log_opt = False,
        local_optimizer=nlopt.LN_BOBYQA,
        verbose=0, func_args=[], func_kwargs={},
        ):
    """
    p0: Initial parameters.
    data: Spectrum with data.
    model_func: Function to evaluate model spectrum. Should take arguments
                (params, (n1,n2...), pts)
    pts: Grid points list for evaluating likelihoods
    multinom: If True, do a multinomial fit where model is optimially scaled to
              data at each step. If False, assume theta is a parameter and do
              no scaling.
    lower_bound: Lower bound on parameter values. 
                 If not None, must be of same length as p0.
    upper_bound: Upper bound on parameter values.
                 If not None, must be of same length as p0.
    fixed_params: If not None, should be a list used to fix model parameters at
                  particular values. For example, if the model parameters
                  are (nu1,nu2,T,m), then fixed_params = [0.5,None,None,2]
                  will hold nu1=0.5 and m=2. The optimizer will only change 
                  T and m. Note that the bounds lists must include all
                  parameters. Optimization will fail if the fixed values
                  lie outside their bounds. A full-length p0 should be passed
                  in; values corresponding to fixed parameters are ignored.
    ineq_constraints: List of functions defining inequality constraints, specifying quantities 
                      that should be less than zero, along with tolerances.
                      Each function should take arguments func(params, grad), where params is
                      the current vector of parameter values. grad is not typically used in dadi.
                      For example, def func1(p, grad): (p[0]+p[1])-1 specifies that the total of
                      p[0]+[1] should be less than 1.
                      This would be passed into opt as ineq_constraints = [(func1, 1e-6)].
                      Here the 1e-6 is the tolerance on the constraint, which is > 0 to deal with numerical
                      rounding issues.
                      Only some algorithms support constraints. We suggest using nlopt.LN_COBYLA.
    eq_constraints: List of functions defining equality constraints, specifying quantities 
                      that should be equal to zero, along with tolerances.
                      Each function should take arguments func(params, grad), where params is
                      the current vector of parameter values. grad is not typically used in dadi.
                      For example, def func1(p, grad): 1 - (p[0]+p[1]) specifies that the total of
                      p[0]+[1] should be equal to 1.
                      This would be passed into opt as ineq_constraints = [(func1, 1e-6)].
                      Here the 1e-6 is the tolerance on the constraint, which is > 0 to deal with numerical
                      rounding issues.
                      Only some algorithms support constraints. We suggest using nlopt.LN_COBYLA.
    algorithm: Optimization algorithm to employ. See
               https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/
               for possibilities.
    ftol_abs: Absolute tolerance on log-likelihood
    xtol_abs: Absolute tolerance in parameter values
              Both these tolerances should be set more stringently than your actual
              desire, because algorithms cannot generally guarantee convergence.
    maxeval: Maximum number of function evaluations
    maxtime: Maximum optimization time, in seconds
    log_opt: If True, optimization algorithm will run in terms of logs of parameters.
    stopval: Algorithm will stop when a log-likelihood of at least stopval
             is found. This is primarily useful for testing.
    local_optimizer: If using a global algorithm, this specifies the local algorithm
                     to be used for refinement.
    verbose: If > 0, print optimization status every <verbose> model evaluations.
    func_args: Additional arguments to model_func. It is assumed that 
               model_func's first argument is an array of parameters to
               optimize, that its second argument is an array of sample sizes
               for the sfs, and that its last argument is the list of grid
               points to use in evaluation.
    func_kwargs: Additional keyword arguments to model_func.
    (See help(dadi.Inference.optimize_log for examples of func_args and 
     fixed_params usage.)
    """
    if lower_bound is None:
            lower_bound = [-np.inf] * len(p0)
    lower_bound = _project_params_down(lower_bound, fixed_params)
    # Replace None in bounds with infinity
    if upper_bound is None:
            upper_bound = [np.inf] * len(p0)
    upper_bound = _project_params_down(upper_bound, fixed_params)
    # Replace None in bounds with infinities
    lower_bound = [_ if _ is not None else -np.inf for _ in lower_bound]
    upper_bound = [_ if _ is not None else np.inf for _ in upper_bound]

    if log_opt:
        lower_bound, upper_bound = np.log(lower_bound), np.log(upper_bound)

    p0 = _project_params_down(p0, fixed_params)

    opt = nlopt.opt(algorithm, len(p0))

    opt.set_lower_bounds(lower_bound)
    opt.set_upper_bounds(upper_bound)

    for cons, tol in ineq_constraints:
        opt.add_inequality_constraint(cons, tol)
    for cons, tol in eq_constraints:
        opt.add_equality_constraint(cons, tol)

    opt.set_stopval(stopval)
    opt.set_ftol_abs(ftol_abs)
    opt.set_xtol_abs(xtol_abs)
    opt.set_maxeval(maxeval)
    opt.set_maxtime(maxtime)

    # For some global optimizers, need to set local optimizer parameters.
    local_opt = nlopt.opt(local_optimizer, len(p0))
    local_opt.set_stopval(stopval)
    local_opt.set_ftol_abs(ftol_abs)
    local_opt.set_xtol_abs(xtol_abs)
    local_opt.set_maxeval(maxeval)
    local_opt.set_maxtime(maxtime)
    opt.set_local_optimizer(local_opt)

    def f(x, grad):
        if grad.size:
            raise ValueError("Cannot use optimization algorithms that require a derivative function.")
        if log_opt: # Convert back from log parameters
            x = np.exp(x)
        return -_object_func(x, data, model_func, pts, 
                             verbose=verbose, multinom=multinom,
                             func_args=func_args, func_kwargs=func_kwargs, fixed_params=fixed_params)

    opt.set_max_objective(f)

    if log_opt:
        p0 = np.log(p0)
    xopt = opt.optimize(p0)
    if log_opt:
        xopt = np.exp(p0)

    opt_val = opt.last_optimum_value()
    result = opt.last_optimize_result()

    xopt = _project_params_up(xopt, fixed_params)

    return xopt, opt_val